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Abstract—A heterogeneous information network (HIN) is one whose nodesmodel objects of different types and whose linksmodel

objects’ relationships. To enrich its information, objects in an HIN are typically associated with additional attributes.We call such an HIN

anAttributed HIN or AHIN.We study the problem of clustering objects in an AHIN, taking into account objects’ similarities with respect to

both object attribute values and their structural connectedness in the network.We show how supervision signal, expressed in the form of

amust-link set and a cannot-link set, can be leveraged to improve clustering results.We put forward the SCHAIN algorithm to solve the

clustering problem, and two highly efficient variants, SCHAIN-PI and SCHAIN-IRAM, which employ the power iteration basedmethod

and the implicitly restarted Arnoldi method respectively to compute eigenvectors of amatrix. We conduct extensive experiments

comparing SCHAIN-based algorithmswith other state-of-the-art clustering algorithms.Our results show that SCHAIN-IRAM outperforms

other competitors in terms of clustering effectiveness and is highly efficient.

Index Terms—Semi-supervised clustering, attributed heterogeneous information network, object attributes, network structure

Ç

1 INTRODUCTION

NETWORKS model real world entities and their relation-
ships by objects and links. A heterogeneous information

network (HIN) is a network whose objects are of different
types and whose links represent different kinds of relation-
ships between objects. Compared with homogeneous infor-
mation networks (in which all objects/links are of one single
type), anHIN ismuchmore expressive in capturing complex
real-world knowledge. For example, the Facebook Open
Graph contains objects that represent Facebook users and
other non-human entities, such as photos, events and pages.
To enrich the information content of anHIN, objects are often
associated with various attributes. For example, on Face-
book, a “user” object is associated with attributes like age,
gender, school, and workplace, while a “photo” object has
attributes like lat-long and date/time that record where and
when the photo was taken.We call an HINwith object attrib-
utes an attributed HIN or AHIN for short.

Cluster analysis is a fundamental task in data analytics.
Given a set of objects, the goal is to partition them into clus-
ters such that objects in the same cluster are similar among

themselves, while objects from different clusters are dissim-
ilar. Clustering finds many interesting applications in
AHINs. For example, it can be applied to a social network
to identify user communities, based on which target market-
ing can be effectively done. The key to effective clustering is
the formulation of a similarity measure between objects that
well matches the clustering objective. In some cases, such
similarity measure cannot be intuitively derived and needs
to be discovered, typically via a learning process.

The challenges of clustering in large AHINs are twofold.
(1) Objects similarity can be attribute-based or link-based. The
former refers to the similarity of two objects’ attribute values,
while the latter refers to how well two objects are connected
in the network. For AHINs, link-based similarity can be mea-
sured by simple network distance measures or by meta-path
relations. A meta-path is a sequence of node types that
expresses a relation between two objects in an AHIN. For
example, if U and P represent “user” and “product page”
object types on Facebook, respectively, and that an edge
between a user and a product page in the network represents
a fact that the user “likes” a product page, then the meta-path
U-P-U represents a relation between two users who have liked
the same product page. Meta-paths have been shown to be
very useful inmany datamining tasks in expressing the struc-
tural relations between objects in HINs [1], [2], [3], [4]. An
interesting issue is how the various types of similarities, be
they attribute-based or link-based, be aggregated to measure
the overall similarities of objects. (2) For complex AHINs,
there could be a large number of object attributes and theoreti-
cally an unlimited number of possible meta-paths to be con-
sidered in the formulation of a similarity measure. In most
cases, only certain attributes and meta-paths are relevant to
a clustering task. The complexity necessitates an automatic
process of selecting the best set of attributes/meta-paths and
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evaluating their importance (often captured by a weighting
scheme) for deriving the best similarity formula. One practical
approach to guide such a process is for a data analyst to pro-
vide supervision, typically made available via examples such
as amust-link set (object pairs that should be put into the same
clusters) and a cannot-link set (object pairs that should not be
put into the same clusters).

In this paper we study the problem of semi-supervised
clustering on AHINs. Our main contributions include:
� We show how attribute-based similarities and link-

based similarities can be effectively aggregated via a weight-
ing scheme. Given a supervision constraint expressed via a
must-link set and a cannot-link set, we showhow theweight-
ing scheme can be theoretically optimizedwith respect to the
constraint. Our approach is to solve the optimization prob-
lem using an iterativemutual update process.
� We show how the mutual update process is reducible

to a trace maximization problem and a non-linear parametric
programming (NPP) problem. We prove some properties of
the NPP problem that allow us to solve it computationally.
Based on the iterative update process, we put forward the
SCHAIN [5] algorithm for clustering objects in an AHIN.
�We propose two variants of SCHAIN, namely, SCHAIN-

PI and SCHAIN-IRAM, which respectively use the power
iteration method and the implicitly restarted Arnoldi method
to compute eigenvectors to improve clustering efficiency.

2 RELATED WORK

Cluster analysis is a fundamental task in data mining. For a
survey on clustering algorithms for traditional relational
data, see [6]. Our goal is to cluster objects in an AHIN given a
supervision constraint expressed via a must-link set and a
cannot-link set, which are also adopted in [7]. The clustering
algorithm we seek should consist of the following elements:
(1) It considers both object attribute values and object con-
nectedness in measuring object similarity. (2) It applies to
networks that are heterogeneous, i.e., objects and links can
be of different types. (3) It is a semi-supervised process
which takes into account supervision constraints. There are
quite a few algorithms previously proposed to cluster net-
worked objects, but most of these algorithms miss one or
more elements we mentioned above. In this section we sum-
marize and categorize these previous algorithms. We also
briefly describe five algorithms, namely, PathSelClus [1],
GNetMine [8], SemiRPClus [9], FocusCO [10] and HAN [11],
and show how they could be adapted to solving our cluster-
ing problem. The performances of the five algorithms are
evaluated and compared with our SCHAIN-based algo-
rithms in Section 5.

[Link-based Clustering]. There are Algorithms that cluster
objects in a network based on object linkage.While the works
presented in [12], [13], [14], [15], [16] focus on homogeneous
information networks, RankClus [17], NetClus [18], SI-Clus-
ter [19] and matrix-factorization-based methods [20] focus
on heterogeneous networks. These methods are unsuper-
visedmethods and they do not consider object attributes.

[Embedding-Based Clustering]. Network embedding has
attracted much attention lately. The idea is to embed net-
work objects into low dimensional vectors, which facilitate
downstream data mining tasks, such as classification and

clustering. While embedding techniques like DeepWalk [21],
LINE [16] and node2vec [22] are based on the network struc-
ture only, other techniques such as GCN [23], SNE [24] and
LANE [25] consider both network links and object attributes.
Moreover, metapath2vec [26] and HIN2Vec [27] are two rep-
resentative methods for embedding objects in HINs, while
HNE [28] and HAN [11] are methods especially designed for
AHINs. In addition, [29] proposes a semi-supervised graph
embedding method. However, the method is restricted to
homogeneous networks.

[Unsupervised Clustering]. In recent years, a number of
algorithms have been proposed to cluster network objects
considering both attribute values and network links. Most
of these works apply to homogeneous networks only [30],
[31], [32], [33], [34], [35], [36]. Other more elaborate methods
that apply to HINs include [37], [38], [39], [40], [41]. All of
these algorithms are unsupervised ones.

[Semi-Supervised Clustering]. Semi-supervised clustering
algorithms on networked data include [42], [43], [44], [45],
[46], [47]. Here, we briefly describe a few representative
ones and discuss how they could be applied on AHINs.

PathSelClus [1] is a meta-path-based clustering algorithm
on HINs. Supervision is given by users providing seed
objects for some clusters. Given two objects, the number of
instances of a certain meta-path P connecting them reflects
how strongly the two objects are “connected” via the meta-
path relation P . Objects’ similarities via a meta-path relation
are captured by a relation matrix, which is regarded as obser-
vations. A probabilistic model of the hidden clusters is
employed to evaluate the probabilities of the observations
(i.e., relation matrix). Each meta-path is assigned a weight.
These weights are learned by an iterative strategy that maxi-
mizes the consistency between the weighted relation matrix
and the clustering results as given by the seed objects. Since
PathSelClus does not consider object attribute values, when
we apply it to AHINs, the attribute values are ignored.

GNetMine [8] is a graph regularized transductive classifi-
cation method for HINs. It first constructs a predictive func-
tion fðljjxÞ for each object x and object label lj. Then, it
minimizes an objective function that consists of two values:
(1) for any two linked objects xp and xq, the difference
between their predictive values fðljjxpÞ and fðljjxqÞ, and (2)
for any labeled object, xr, the difference between its predic-
tive value fðljjxrÞ and its true label-induced value, which is 1
if xr’s label is lj; 0 otherwise. The predictive functions
fðljjxÞ’s are trained by optimizing the objective function via
an iterative method. Finally, labels are predicted based on
the fðljjxÞ’s. Even though GNetMine is a classification algo-
rithm, we can apply it to our clustering problem by regard-
ing cluster id’s as object labels. Moreover, by assigning
objects that “must-link” with the same label and objects that
“cannot-link” with different labels, we obtain labeled objects
as training data. Like PathSelClus, GNetMine does not con-
sider attribute values.

SemiRPClus [9] is a semi-supervised algorithm for clus-
tering objects in an HIN. Based on relation-paths (which are
subsets of meta-paths), the method derives several meas-
ures, which are linearly combined to evaluate the similari-
ties of objects in the network. An objective function is
defined to learn the weights of different measures with the
goal of maximizing intra-cluster similarity and minimizing
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inter-cluster similarity. A logistic model is used to learn the
weights of the relation-paths. After the weights are learned
and a weighted similarity matrix is derived, the algorithm
resorts to traditional clustering algorithms to cluster objects.
SemiPRClus does not consider object attribute values.

In [10], a user-oriented clustering approach FocusCO for
homogeneous network is proposed. Given a set of user-pro-
vided exemplar nodes, the algorithm first infers the object
attributes (and their weights) that are the most relevant in
making the exemplar nodes similar among themselves.
Then, the algorithm assigns a weight to each link in the net-
work based on theweighted similarity of its end-nodes’ attri-
bute values. Next, edges with large weights are retained and
each connected component in the resulting graph forms a
core set. The core sets are then adjusted by adding or remov-
ing members with the goal of decreasing the conductance of
the cores, which essentially measures how well objects in a
core are isolated from those outside the core. The resulting
cores are then regarded as clusters of interest. FocusCO con-
siders both object attributes and link information. However,
it only applies to homogeneous networks. When we apply
FocusCO to our clustering problem, we ignore object and
link types, and regard anAHIN as a simple graph.

HAN [11] is a state-of-the-art graph neural network
model for representing AHINs. It generates node embed-
dings based on a hierarchical attention mechanism, which
includes node-level and semantic-level attentions. Specifi-
cally, the node-level attention is used to learn the relative
importance of meta-path-based neighbors of a given node
while the semantic-level attention is used to learn the
importance of meta-paths. For each meta-path, HAN gener-
ates node embeddings by iteratively aggregating the
embeddings of meta-path-based neighbors. The final node
embedding vectors are derived by aggregating the embed-
dings generated based on different meta-paths with the
learned meta-path weights taken into account. Similar to
GNetMine, we apply HAN to our semi-supervised cluster-
ing problem by regarding cluster id’s as object labels and
training it as a classification model. The predicted labels of
objects are taken as the objects’ cluster id’s.

3 DEFINITIONS

In this section we give a formal problem definition.

Definition 1 Attributed Heterogeneous Information Net-
work (AHIN). Let T = fT1; . . . ; Tmg be a set of m > 1 object
types. For each type Ti, let X i be the set of objects of type Ti and
Ai be the set of attributes defined for objects of type Ti. An
object xj of type Ti is associated with an attribute vector
ffj ¼ ðfj1; fj2; . . . ; fjjAijÞ. An AHIN is a graph G ¼ ðV;E;AÞ,
where V ¼

S m
i¼1X i is a set of nodes, E is a set of links (each

represents a binary relation between two objects in V ), and
A ¼

S m
i¼1Ai.

Definition 2 Network Schema. A network schema is the meta
template of an AHIN G ¼ ðV;E;AÞ. Let (1) f : V ! T be an
object-type mapping that maps an object in V into its type, and
(2) c : E !R be a link-relation mapping that maps a link in
E into a relation in a set of relations R. The network schema of
an AHING, denoted by TG ¼ ðT ;RÞ, shows how objects of dif-
ferent types are related by the relations in R. TG can be

represented by a schematic graph with T and R being the
node set and the edge set, respectively. Specifically, there is an
edge (Ti, Tj) in the schematic graph iff there is a relation in R
that relates objects of type Ti to objects of type Tj.

Fig. 1a shows an example AHIN that models movie
information (attribute information is not shown). The AHIN
consists of four object types: T = { movie (), actor(), director
(�), producer(~) }. There are also three relations inR, which
are illustrated by the three edges in the schematic graph
(Fig. 1b). For example, the relation between actor and movie
carries the information of which actor has acted in which
movie. Actors, directors and producers have attributes like
age, gender, birthplace, while movies are associated with
attributes like release date, box office, etc.

Definition 3 Meta-Path. A meta-path P is a path defined on a

schematic graph. A meta-path P: T1 �!
R1 � � � �!Rl

Tlþ1 defines a
composite relation R ¼ R1 � � � � �Rl that relates objects of type
T1 to objects of type Tlþ1. If two objects xu and xv are related by
the composite relation R, then there is a path, denoted by
pxuˆ xv , that connects xu to xv in G. Moreover, the sequence of
links in pxuˆ xv matches the sequence of relations R1; . . . ; Rl

based on the link-relation mapping c. We say that pxuˆ xv is a
path instance of P, denoted by pxuˆ xv ‘ P.

As an example, the path pM1ˆ M3 ¼M1! A2!M3 in
Fig. 1a is an instance of the meta-path Movie-Actor-Movie
(abbrev. MAM).

Definition 4 Supervision Constraint. The clustering process is
supervised by a user through a constraint (M, C), where M
and C are the must-link set and the cannot-link set, respec-
tively. Each is a set of object pairs ðxa; xbÞ. An object pair inM
represents that the two objects must belong to the same cluster,
while a pair in C indicates that the pair should not be put into
the same cluster.

Definition 5 Semi-Supervised Clustering in an AHIN. Given
an AHING ¼ ðV;E;AÞ, a supervision constraint (M, C), a tar-
get object type Ti, the number of clusters k, and a set of meta-
paths PS, the problem of semi-supervised clustering of type Ti

objects inG is to (1) discover an object similarity measure S that
is based on object attributes and meta-paths, and (2) partition
the objects in X i into k disjoint clusters C ¼ fC1; . . . ; Ckg based
on the similarity measure S such that the clustering results best
agree with the constraint (M, C).

4 ALGORITHM

In this section we present our algorithm SCHAIN (Semi-
supervised Clustering inHeterogeneousAttributed Informa-
tion Networks) and two more-efficient variants SCHAIN-PI

Fig. 1. An AHIN (a) and its schematic graph (b).
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and SCHAIN-IRAM. SCHAIN first composes a similarity
matrix S that measures the similarity of every object pair
based on the objects’ attribute similarity and network connect-
edness. The latter is derived based on themeta-paths connect-
ing the object pair. Since attributes and meta-paths vary in
their relevancy to a clustering objective, SCHAIN assigns a
weight to each object attribute andmeta-path in composing S.
To take into account the supervision constraint, SCHAIN
derives a penalty function involving all the weightings as
well as objects’ cluster assignment. It then employs an itera-
tive, staggered 2-step learning process to determine the opti-
mal weights and cluster assignment as output. Sections 4.1
and 4.2 present the similaritymatrix and the penalty function,
respectively. Section 4.3 depicts the optimization technique.
In Section 4.4, we analyze the computation cost of SCHAIN
and put forward SCHAIN-PI and SCHAIN-IRAM to acceler-
ate the computation.

4.1 Similarity Matrix

[Attribute-Based] Given two objects xu, xv of type Ti, let ffu

and ffv be their respective attribute vectors (see Definition 1).
Recall that Ai is the set of attributes associated with type-Ti

objects. We define an attribute weight vector vv 2 R1�jAij,
whose jth component, wj, captures the importance of the
jth attribute in Ai for the clustering task. We define the attri-
bute-based similarity matrix, denoted SA, by

SAðxu; xvÞ ¼
XjAij

j¼1
vj � simðfuj; fvjÞ
� �

; (1)

where simðfuj; fvjÞ can be any standard similarity function
defined over the jth attribute of Ai [48].

[Link-Based]. We use meta-paths to measure the connect-
edness of objects in the network. Given a symmetric meta
path P, SCHAIN measures the similarity between two
objects xu and xv w.r.t. P by PathSim [3]:

SPðxu; xvÞ ¼
2� jfpxuˆ xv : pxuˆ xv ‘ Pgj

jfpxuˆ xu : pxuˆ xu ‘ Pgj þ jfpxvˆ xv : pxvˆ xv ‘ Pgj
;

where pxuˆ xv denotes a path instance from object xu to object
xv in the network, and pxuˆ xv ‘ P denotes that the path is an
instance of the meta-path P. PathSim is shown to be a very
effective measure of meta-path-based similarity. It com-
pares favorably against other link-based similarity meas-
ures, such as random walk and SimRank [3].

Given a set of meta-paths PS, each meta-path Pj 2 PS
derives a similarity matrix SPj and is given a weight �j. We
define the link-based similarity matrix, denoted SL, by:

SL ¼
XjPSj
j¼1

�jSPj : (2)

Let �� 2 R1�jPSj be the meta-path weight vector, whose jth
component is �j. Finally, the overall similarity matrix S is a
weighted sum of SL and SA:

S ¼ aSA þ ð1� aÞSL; (3)

where a is a weighting factor that controls the relative
importance of the two similarity matrices.

4.2 Supervision Constraints

Given a clustering fCrgkr¼1 that partitions objects in X i into k
clusters, the quality of the clustering can be measured by
how similar objects of different clusters are to each other —
the larger is the inter-cluster similarity, the worse is the clus-
tering quality. We measure the inter-cluster similarity based
on normalized cut [12]. Specifically, for any two clusters Cp,
Cq, define linksðCp; CqÞ ¼

P
xu2Cp;xv2Cq

Sðxu; xvÞ. The nor-

malized cut of a clustering fCrgkr¼1 is given by NC ¼Pk
r¼1

linksðCr;X inCrÞ
linksðCr;X iÞ . Note that NC is dependent on S. Hence,

it is a function of vv, ��, and fCrgkr¼1.
Another way to evaluate the clustering quality is to check

how well the clustering agrees with the supervision con-
straint. Specifically, consider an object pair ðxu; xvÞ in a
must-link set M. If a clustering assigns the objects to the
same cluster, the clustering agrees with the constraint,
which is an indication of good clustering quality. On the
contrary, if the object pair is in the cannot-link set C, then
having the objects in the same cluster indicates poor cluster-
ing quality. Taking supervision constraint into consider-
ation, we modifyNC into the following penalty function:

J ð��;vv; fCrgkr¼1Þ¼
Xk
r¼1

linksðCr;X inCrÞ
linksðCr;X iÞ

�
Xk
r¼1

X
ðxu;xvÞ2M

LðxuÞ¼LðxvÞ¼r

Sðxu; xvÞ
linksðCr;X iÞ

þ
Xk
r¼1

X
ðxu;xvÞ2CLðxuÞ¼LðxvÞ¼r

Sðxu; xvÞ
linksðCr;X iÞ

;

(4)

where LðxÞ denotes the assigned cluster for object x. For
convenience, we encode a clustering fCrgkr¼1 by k indicator
vectors zzr’s. Each zzr consists of n ¼ jX ij bits, such that
zzrðuÞ ¼ 1 if object xu 2 X i is assigned to cluster Cr; 0 other-
wise. We further encode the supervision constraint as a con-
straint matrix W 2 Rn�n, where Wðu; vÞ ¼ 1 if < xu; xv >
2M; -1 if < xu; xv > 2 C; and 0 otherwise. Let D 2 Rn�n

be a diagonal matrix such that dði; iÞ is the sum of the entries
in the ith row of S. Eq. (4) can be rewritten as

J ð��;vv; fzzrgkr¼1Þ ¼
Xk
r¼1

zzTr ðD� SÞzzr
zzTr Dzzr

�
Xk
r¼1

zzTrW � Szzr
zzTr Dzzr

¼
Xk
r¼1

zzTr ðD� S �W � SÞzzr
zzTr Dzzr

;

(5)

where � is the Hadamard product for two matrices.
Furthermore, to prevent overfitting, we add a regulariza-

tion term to Eq. (5) and get,

J ð��;vv; fzzrgkr¼1Þ ¼
Xk
r¼1

zzTr ðD� S �W � SÞzzr
zzTr Dzzr

þ gðjj��jj2 þ jjvvjj2Þ:

(6)

Finally, to find the best clustering, we minimize the pen-
alty function J ðÞ subject to the following constraints: (1)
each object is assigned to one cluster:

Pk
r¼1 zzrðuÞ ¼ 1; zzrðuÞ

2 f0; 1g; (2) meta-path weights and attribute weights
are non-negative with their respective sums equal to 1:PjPSj

j¼1 �j ¼ 1;
PjAij

l¼1 vl ¼ 1; �j � 0 and vl � 0.
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4.3 Model Optimization

Our objective is to find the best clustering, or equivalently,
the indicator vectors fzzrgkr¼1 that minimizes the penalty
function J ðÞ. Note that J ðÞ is a function of �� and vv (which
are the weights of meta-paths and object attributes), whose
values need to be learned as well. SCHAIN learns these
parameters using an iterative mutual update approach.
Each iteration consists of two steps. First, given �� and vv, we

find the optimal clustering fzzrgkr¼1. Second, given fzzrg
k
r¼1,

we find the optimal �� and vv. SCHAIN iterates until the
change in the penalty is smaller than a threshold � or a fixed
number of iterations have been executed. Next, we show
how the two update steps are performed.

4.3.1 Finding the Optimal f zrgkr¼1 Given �� and vv

Given �� and vv, J ðÞ is a function of fzzrgkr¼1. We define a

matrix ~Z, whose rth column ~Z�r equals D
1
2zzr=ðzzTr DzzrÞ

1
2. Note

that since ~ZT ~Z ¼ Ik, where Ik is the k� k identity matrix, ~Z
is an orthonormal matrix. For fixed values of �� and vv, mini-
mizing J ðÞ is equivalent to minimizing:

J 0ð ~ZÞ ¼ traceð ~ZTD�
1
2ðD� S �W � SÞD�12 ~ZÞ;

¼ traceðIk � ~ZTD�
1
2ðS þW � SÞD�12 ~ZÞ:

(7)

Since traceðIkÞ is a constant, the above is equivalent to solv-
ing the following trace maximization problem:

max
~ZT ~Z¼Ik

trace ~ZTD�
1
2ðS þW � SÞD�12 ~Z

� �
: (8)

Since ~Z is a rigorous cluster indicator matrix, the optimiza-
tion problem is NP-hard [37]. To address this issue, we
allow real relaxation to ~Z so that its entries can assume real
values. Then, according to the Ky-Fan theorem [49], the
maximization problem (8) has a closed-form solution that
corresponds to the subspace spanned by the top k eigenvec-
tors of K ¼ D�

1
2ðS þW � SÞD�12. Since ~Z�r ¼ D

1
2zzr=ðzzTr DzzrÞ

1
2,

we need to transform each ~Z�r back to a real-relaxed zzr. We
first calculate U ¼ D�

1
2 ~Z and then normalize it by column.

Each column in U is a real-relaxed zzr. Finally, with the real
relaxation, entries in U take on fractional values, so the clus-
tering is not definite. To derive a hard clustering, we treat
each row in U as a feature vector of an object. After row nor-
malization on U , we adopt k-means to cluster objects.

4.3.2 Finding the Optimal �� and vv Given f zzrgkr¼1
For fixed fzzrgkr¼1, J ðÞ is a function of �� and vv. We rewrite
Eq. (6) as:

J ð��;vvÞ ¼
Xk
r¼1

zzTr Dzzr � zzTr ðS þW � SÞzzr
zzTr Dzzr

þ gðjj��jj2 þ jjvvjj2Þ;

¼ k�
Xk
r¼1

zzTr ðS þW � SÞzzr
zzTr Dzzr

þ gðjj��jj2 þ jjvvjj2Þ:

(9)
Minimizing J ð��;vvÞ is equivalent to maximizing:

max
��;vv

Xk
r¼1

zzTr ðS þW � SÞzzr
zzTr Dzzr

� gðjj��jj2 þ jjvvjj2Þ: (10)

Note that the entries of matrices S and D are linear func-
tions of �� and vv. Therefore, the numerator and the denomi-
nator of each term in the summation are both linear
functions of �� and vv. Hence, (10) can be rewritten as:

Hð��;vvÞ ¼ max
��;vv

fð��;vvÞ
gð��;vvÞ ; (11)

where fð��;vvÞ and gð��;vvÞ are two nonlinear multivariate
polynomial functions.

It is shown in [50] that the maximization problem with
the form shown in Eq. (11) can be solved by solving the fol-
lowing related non-linear parametric programming problem:

Definition 6. [Non-Linear Parametric Programming
(NPP)]. Let fð��;vvÞ and gð��;vvÞ be two multivariate polyno-
mial functions. For a given m, find

F ðmÞ ¼ max
��;vv

fð��;vvÞ � mgð��;vvÞð Þ: (12)

In our context, the parameters �� and vv are subject to the con-
straints listed at the end of Section 4.2.

In [50], the following theorem is proved.

Theorem 1. Given a fixed m, let ð���;vv�Þ be the optimal solution
to F ðmÞ (Eq. (12)). ð���;vv�Þ is also an optimal solution to
Hð��;vvÞ (Eq. 11) if and only if F ðmÞ ¼ 0.

Besides Theorem 1, a few lemmas are also proved in [50]:

Lemma 1. F ðmÞ is convex.

Lemma 2. F ðmÞ is continuous.

Lemma 3. F ðmÞ is strictly monotonically decreasing, i.e., if
m1 < m2, F ðm1Þ > F ðm2Þ.

Lemma 4. F ðmÞ ¼ 0 has a unique solution.

Due to space limit, readers are referred to [50], [51] for
the proofs of the theorem and lemmas.

From Theorem 1, we need to find a m� and its corre-
sponding ð���;vv�Þ such that F ðm�Þ ¼ 0. SCHAIN does so by
an iterative numerical method. In each iteration, SCHAIN
computes a m and ð��;vvÞ. Let mi, ð��i;vviÞ be those computed
in the ith iteration. SCHAIN first sets m1 ¼ 0 and in each
iteration, performs two steps: (Step 1:) Solve the NPP prob-
lem (Eq. (12)) for m ¼ mi and set ð��i;vviÞ to be the solution
found. (Step 2:) Set miþ1 ¼ fð��i;vviÞ=gð��i;vviÞ. Next, we show
theoretical properties of this update process.

Property 1 F ðm1Þ > 0F ðm1Þ > 0. Without loss of generality, we
assume fð��;vvÞ > 0 and gð��;vvÞ > 0.1 Now, F ðm1Þ = F ð0Þ =
max��;vvfð��;vvÞ > 0.

Property 2 if F ðmiÞ > 0F ðmiÞ > 0 then0 	 F ðmiþ1Þ < F ðmiÞ0 	 F ðmiþ1Þ < F ðmiÞ. Since
ð��i;vviÞ is the solution of the NPP problem for m ¼ mi

(Eq. (12)), we have fð��i;vviÞ � migð��i;vviÞ ¼ F ðmiÞ > 0.
Hence, miþ1 ¼ fð��i;vviÞ=gð��i;vviÞ > mi. By Lemma 3,
F ðmiþ1Þ < F ðmiÞ. Also, we have F ðmiþ1Þ = max��;vvðfð��;vvÞ�
miþ1gð��;vvÞÞ � fð��i;vviÞ � miþ1gð��i;vviÞ ¼ 0.

From the properties, we see that SCHAIN starts with a
positive F ðmÞ, whose value stays positive and decreases

1. One can show that the quantity (10) is bounded below by�2g. We
can add an arbitrary large constant to (10) to make it, and thus fð��;vvÞ
and gð��;vvÞ, positive.
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across iterations until it reaches 0. The update procedure
thus converges to the optimal values. The SCHAIN algo-
rithm is summarized in Algorithm 1.

Algorithm 1. SCHAIN

Input: G,M, C, Ti, k, PS.
Output: C ¼ fC1; . . . ; Ckg
1: Compute similarity matrices SA, SL, and S
2: t ¼ 0, DJ ¼ 1, �� ¼ ð 1

jPSj ; . . . ;
1
jPSjÞ, vv ¼ ð 1

jAij ; . . . ;
1
jAijÞ

3: while DJ > � or t < max_iter do
4: "Step 1: Optimize fzzrgkr¼1 given �� and vv

5: Solve Eq. (8) to obtain real-relaxed ~Z
6: Calculate U ¼ D�1=2 ~Z and normalize it
7: Derive fzzrgkr¼1 from U by k-means
8: " Step 2: Optimize �� and vv given fzzrgkr¼1
9: j ¼ 1; mj ¼ 0
10: repeat
11: Solve Eq. (12) with m ¼ mj to obtain ��j, vvj

12: mjþ1 ¼ fð��j;vvjÞ=gð��j;vvjÞ; j++
13: until F ðmjþ1Þ converges to 0
14: DJ = change in J with the updated fzzrgkr¼1, ��, vv
15: t++
16: end while
17: Decode fCrgkr¼1 from fzzrg

k
r¼1

18: return C ¼ fC1; . . . ; Ckg

4.4 Improving Efficiency

Themost computationally expensive component of SCHAIN
is the eigen decomposition in solving Eq. (8), which has a
time complexity of Oðn3Þwhere n is the number of objects to
be clustered (jX ij). To speed up, we propose two methods to
compute the eigenvectors.

4.4.1 Power Iteration Based Method

Power iteration (PI) is an efficient technique to compute the
dominant eigenvector of a matrix. Given a matrix W , PI
starts with a random vector vv0 6¼ 00 and iterates:

vvtþ1 ¼
Wvvt
jjWvvtjj1

; t � 0:

SupposeW has eigenvalues t1 > t2 > ::: > tn with associ-
ated eigenvectors hh1; hh2; . . . ; hhn. We express vv0 as

vv0 ¼ c1hh1 þ c2hh2 þ :::þ cnhhn;

where the c1, ..., cn are coefficients. Let R ¼
Qt�1

i¼0 kWvvik1. We
have,

vvt ¼Wtvv0=R

¼ ðc1Wthh1 þ c2W
thh2 þ :::þ cnW

thhnÞ=R
¼ ðc1tt1hh1 þ c2t

t
2hh2 þ :::þ cnt

t
nhhnÞ=R

¼ c1t
t
1

R
hh1 þ

c2
c1

t2

t1

� �t

hh2 þ :::þ cn
c1

tn

t1

� �t

hhn

" #
:

vvt is a linear combination of the eigenvectors. If c1 6¼ 0, vvt con-
verges to a scaled version of the dominant eigenvector hh1.

It has been shown in [52] that one can truncate the iteration
process to obtain an intermediate pseudo-eigenvector vvt,
based on which the Power Iteration Clustering (PIC) method is

proposed. PIC takes the jth component of vvt as the feature of
object xxj and applies k-means to the feature to compute object
clusters. When the number of clusters is large, a single
pseudo-eigenvector is generally not sufficient to produce
high-quality cluster. In [53], the PIC-k method is proposed.
The method runs truncated PI multiple times to derive
multiple pseudo-eigenvectors. Compared with the standard
spectral clustering methods, PIC-k uses the k pseudo-eigen-
vectors to obtain an improved clustering result. Inspired
by PIC-k, we approximate the top k eigenvectors of
K ¼ D�

1
2ðS þW � SÞD�12 by running truncated PI k times.

The truncated PI algorithm is summarized in Algorithm 2.
When the matrix K is sparse, the computational cost of PI is
reduced toOðdnÞ, where d
 n is the average number of non-
zero entries per row in K. The complexity of this PI-based
approximation method is OðkdnÞ, which is substantially
more efficient than the basic Oðn3Þ method. We call this
method SCHAIN-PI.

Algorithm 2. Truncated Power Iteration

Input:K, k, vv0.
Output: vvtþ1
1: repeat
2: vvtþ1  Kvvt

jjKvvtjj1
; ddtþ1  jvvtþ1 � vvtj; t++

3: until jddtþ1 � ddtj ! 0
4: return vvtþ1

4.4.2 Implicitly Restarted Arnoldi Method

The power iteration method computes the dominant eigen-
vector of a matrixW . During the process, a squence of inter-
mediate vectors fvv0;Wvv0;W

2vv0; :::g are generated. This
sequence is called a Krylov sequence. Although PI discards
this sequence, interestingly, the sequence is useful in deriv-
ing a good approximation of the eigenvectors. Based on the
Krylov sequence, one can define Kn ¼ spanfvv0;Wvv0; . . . ;
Wn�1vv0g as the nth order Krylov subspace. Arnoldi Factorization
derives an orthogonal projection of W onto the Krylov sub-
space that can be used to approximate the eigenpairs of W .
Specifically, given W 2 Rn�n, a k-step Arnoldi factorization of
W has the formWVk ¼ VkHk þ ffkee

T
k , where (1) Vk 2 Rn�k has

orthonormal columns, (2) V T
k ffk ¼ 00, (3) Hk 2 Rk�k is an

upper Hessenberg matrix with non-negative subdiagonal
elements, and (4) eek is a unit vector whose kth entry is 1.
Note that Hk represents an orthogonal projection of W . An
alternative form of the factorization is

WVk ¼ ðVk; vvkþ1Þ
Hk

bkee
T
k

� �
;

where bk ¼ jjffkjj2 and vvkþ1 ¼ 1
bk
ffk.

Arnoldi factorization can be used to compute the eigen-
values and eigenvectors ofW from those of the small matrix
Hk. Given an eigenpair ðu; ssÞ of Hk, i.e., Hkss ¼ ssu, the vector
xx ¼ Vkss satisfies

jjWxx� xxujj2 ¼ jjðWVk � VkHkÞssjj2 ¼ jbkee
T
k ssj:

A small value of jbkee
T
k ssj indicates that ðu; ssÞ well appro-

ximates an eigenpair of W . In particular, when jjffkjj2 ¼ 0,
jbkee

T
k ssj ¼ 0 and ðu; xxÞ becomes an exact eigenpair ofW .
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In practice, the number of steps needed to obtain accu-
rate approximations to the eigenvectors of interest may be
large, and which is determined by the initial vector vv0. A
desired vv0 should contain nonzero values in the directions
of the eigenvectors to be computed without containing any
irrelevant components. In the Arnoldi factorizarion process,
we would like to adaptively refine vv0 and restart the Arnoldi
factorization with a new vv0. Implicitly restarted Arnoldi
method (IRAM) [54] employs an implicit way to update vv0.
Consider an m-step Arnoldi factorization WVm ¼ VmHmþ
ffmee

T
m, where m ¼ kþ p. It will be repeatedly compressed to

a k-step factorization that retains the desired eigen-informa-
tion through implicitly shifted QR decomposition. Let sj be
a shift and Hm � sjI ¼ QjYj, where Qj is orthogonal and Yj

is upper triangular. We have

WVm � VmHm ¼ ðW � sjIÞVm � VmðHm � sjIÞ;
¼ ðW � sjIÞVm � VmQjYj;

¼ ffmee
T
m:

(13)

Hence,

WðVmQjÞ � ðVmQjÞðYjQj þ sjIÞ ¼ ffmee
T
mQj: (14)

This can be easily extended with up to p shifts applied:

WV þm ¼ V þmHþm þ ffmee
T
mQ̂; (15)

where V þm ¼ VmQ̂, Hþm ¼ Q̂THmQ̂ and Q̂ ¼ Q1Q2:::Qp. Due
to the Hessenberg structure of the matrices Qj, the first
k� 1 entries of the vector eeTmQ̂ are zero and an updated
k-step Arnoldi factorization can be derived by equating the
first k columns on both sides of Eq. (15). From Eq. (13), each
shift sj will replace the starting vector vv0 with ðW � sjIÞvv0,
so an appropriate selection of sj will filter the unwanted
eigenvector information from vv0. Based on the updated
k-step Arnoldi factorization, p additional steps will be per-
formed to return to m-step Arnoldi factorization. The whole
process will be repeated (restarted Arnoldi) until conver-
gence. For more details, see [55].

We use IRAM to compute the top k eigenvectors of K in
Eq. (8). We call this method SCHAIN-IRAM. We assume an
m-step Arnoldi factorization, where m ¼ kþ p and k < m

 n. In each iteration, an eigen-decomposition is performed
onHm with a time complexity ofOðm3Þ. Moreover, each iter-
ation takes p steps to update matrices V þm , Hþm and Q̂, with
the computation cost of each step being Oðm3 þ nm2Þ. The
overall cost of SCHAIN-IRAM is Oðhðm3 þ pðm3 þ nm2ÞÞÞ,
where h is the number of iterations to convergence. Our
experiments show that h is practically very small.

5 EXPERIMENTS

In this section we evaluate the performance of SCHAIN,
SCHAIN-PI, and SCHAIN-IRAM2 and compare them against
9 other algorithms by applying them to three example clus-
tering tasks on real data. We have also generated synthetic
datasets to study the various aspects of the algorithms. We
will illustrate the importance of integrating attribute-based

similarity and link-based similarity in clustering objects in
AHINs and show the effectiveness of SCHAIN in determin-
ing the relative weights (vv and ��) of attributes and meta-
paths. We show that the weight-learning process of SCHAIN
converges quickly under the example clustering tasks. We
also perform an efficiency study and show that SCHAIN-PI
and SCHAIN-IRAM are much more efficient than SCHAIN.
In particular, our results show that SCHAIN-IRAM achieves
high efficiencywithout sacrificing clustering quality.

5.1 Algorithms for Comparison

We compare 12 algorithms, which can be categorized into
four groups:

� Attribute-only: The first group of clustering algorithms
consider only object attributes. These are traditional
methods which ignore the network structure of an
AHIN. We chose Spectral-Learning [46] and a semi-
supervised version of normalized cuts [44] as repre-
sentatives, which are denoted SL and SNcuts, res-
pectively. Both methods are spectral clustering
approaches of semi-supervised clustering. The differ-
ence is that SL uses additive normalization while
SNcuts adopts row normalization. Since SL and
SNcuts do not learn attribute weights, we give all
attributes equal weights in constructing an attribute
similaritymatrix.

� Link-only: These methods utilize only the link infor-
mation of the network and they ignore object attribute
values. We chose GNetMine [8], PathSelClus [1] and
SemiRPClus [9] as representativemethods of this cate-
gory. These algorithmswere described in Section 2.

� Attribute+Link: Methods of this category use both
attribute and link information. We consider both
FocusCO andHAN, whichwere described in Section 2.
In particular, HAN is a state-of-the-art deep neural
network model for AHINs. For FocusCO, we gener-
ate a local cluster for each cluster and take all the local
clusters as the final results.

� SCHAINand its variants: We evaluate SCHAIN and
four variants: (1) SCHAIN uses meta-paths to derive
the link-based similarity matrix. An alternative mea-
sure is random walk with restart (RWR) [56]. Specifi-
cally, for the link-based similarity matrix SL, we set
its (i, j) entry to be the steady-state probability from
object i in the network to object j. We call this variant
SCHAIN-RWR. By comparing SCHAIN with this
variant, we will learn about the importance of meta-
paths in solving the clustering problem. (2) SCHAIN
uses an iterative learning process to determine the
optimal weights of attributes and meta-paths. To
study the effectiveness of weight learning, we modify
SCHAIN such that it assumes certain initial values of
�� and vv (see Line 3 of Algorithm 1), finds the optimal
fzzrgkr¼1 once, and reports that as the final clustering.
In other words, we take away the iteration of the
while-loop and retain only Lines 6-7.We call this vari-
ant SCHAIN-NL (No weight-Learning). Moreover,
we evaluate SCHAIN-PI and SCHAIN-IRAM, which
are two variants that efficiently compute approximate
top-k eigenvectors of thematrixK (see Eq. (8)).

2. The codes of SCHAIN, SCHAIN-PI, and SCHAIN-IRAM are pub-
licly available at https://github.com/lixiang3776/SCHAIN.
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5.2 Clustering Tasks

We use two real datasets, namely, Yelp and DBLP in our
experiments. Yelp3 contains information of businesses, their
users, locations, reviews, etc. DBLP4 is a bibliographic net-
work dataset which captures authors/venues/keywords
information of academic publications. From these datasets,
we define three clustering tasks:

� Yelp-Business. We extracted businesses located in
three states of the US: North Carolina (NC), Wiscon-
sin (WI), Pennsylvania (PA); and in Edinburgh
(EDH) of the UK. We constructed an AHIN that com-
prises 10,133 business objects (B); 73,366 user objects
(U); 100 city objects (C); and 472 business sector
objects (T) (such as “restaurant” and “shopping”).
Each business object is associated with several attrib-
utes including lat-long, review count, quality star,
and parking lot (whether parking facility is pro-
vided). Links include B-T (business and its category),
U-B (customer of a business), B-C (business located in
a city). We consider the meta-path set {BCB, BUB,
BTB}. The clustering task is to cluster business objects
by state. We use the state information provided in the
dataset as the ground truth.

This clustering task is a very simple one. In partic-
ular, either attributes or links provide reliable sources
to allow perfect clustering to be obtained. All the clus-
tering algorithms, whether they are attribute-based
only, link-based only, or both, are expected to per-
formwell.

� Yelp-Restaurant. We extracted information related to
restaurant business objects of three sub-categories:
“Fast Food”, “Sushi Bars” and “American (New)
Food”. We constructed an AHIN of 2,614 business
objects (B); 33,360 review objects (R); 1,286 user
objects (U) and 82 food relevant keyword objects (K).
Each restaurant has 3 categorical attributes: reserva-
tion (whether reservation is required), service (waiter
service or self service) and parking; 1 numerical attri-
bute: review count; and 1 ordinal attribute: quality
star. Links include B-R (business receives a review),
R-U (reviewwritten by a customer), R-K (review con-
tains a keyword). We consider the meta-path set
{BRURB, BRKRB}. The clustering task is to cluster res-
taurants by category.

This clustering task is slightly more difficult than
Yelp-Business because it is not totally obvious which
attributes/meta-paths are relevant to the task. It is
thus more interesting to see how the various algo-
rithms fair against each other, particularly in their
ability to identify the most relevant features and their
appropriate weights.

� DBLP. CIKM is a conference focusing on three
research areas: Information Retrieval (IR), Data Min-
ing (DM) and Databases (DB). We extracted a subset
of the DBLP network that comprises 387 authors (A),
2,044 papers (P), and 2,171 key terms (T). Each of the
387 authors has published in CIKM andhas published

in at least one of the conferences SIGIR, KDD, and
VLDB. For each author object, the numbers of his/her
publications in the four conferences serve as the
object’s attribute values (i.e., 4 numerical attributes).
Links include A-P (author publishes a paper), P-T
(paper contains a key term). We consider the meta-
path set: {APA, APAPA, APTPA}. The clustering task
is to cluster authors by their research areas (IR, DM,
DB). We obtained the ground truth from the dataset
dblp-4area [18], which labels each author by his/her
primary research area.

This task is the most difficult among the three tasks
because the research areas somewhat overlap. Cluster
memberships are therefore not as clear cut as in the
other tasks.

5.3 Results

For each clustering task, we construct a supervision con-
straint (M, CÞ in the following way. We randomly pick a
certain percentage of the objects (to be clustered) as seeds.
Since we know the true labels of objects (the ground truth),
for each pair of seed objects xu, xv, we put (xu, xv) inM if xu
and xv share the same label; we put (xu, xv) in C otherwise.
We use Normalized Mutual Information (NMI) [57] between a
clustering result C and the clustering based on the true
objects’ labels to measure the quality of the clustering C.
NMI ranges from 0 to 1; the higher the NMI is, the more C
resembles the true clustering. NMI = 1 if C perfectly agrees
with the true clustering. Each reported NMI is an average of
10 runs and each run uses a different set of seed objects to
construct the supervision constraint. Since HAN is a deep
neural network model, in addition to a training set, it fur-
ther needs a validation set to prevent overfitting during
training. In our experiments, we use an extra 10 percent
seeds to construct a validation set for HAN. We measure
the attribute similarity of two Yelp-Business objects xu and
xv in the following way: For a (normalized) numerical attri-
bute j, we use the similarity function simðfuj; fvjÞ ¼ 1�
jfuj � fvjj (see Eq. (1)); For a categorical attribute, simðfuj;
fvjÞ ¼ 1 if fuj ¼ fvj; 0 otherwise. Likewise for Yelp-Restau-
rant objects. For DBLP, the feature vector of an author object
xu is a normalized vector fufu of four conference paper
counts. The attribute similarity of two authors xu and xv is
given by the dot-product fufu � fvfv.

5.3.1 Clustering Quality

Tables 1, 2 and 3 compare the clustering qualities of the vari-
ous algorithms on the three tasks. We use GNM and PSC as
shorthands for GNetMine and PathSelClus, respectively.
Moreover, for all SCHAIN variants, we use S as shorthand
for SCHAIN due to space limitation. The first column (%
seeds) of each table shows the percentage of objects taken as
seed objects to constructM and C. In each row, the NMI of
the best algorithm is highlighted. From the tables, we make
the following observations.

� As we have explained previously, Yelp-Business is a
relatively simple clustering task. In particular, there
are attributes (e.g., lat-long) and meta-paths (e.g.,
BCB) that individually provide good similarity

3. http://www.yelp.com/academic_dataset
4. http://dblp.uni-trier.de
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measures for the clustering task. We therefore see
algorithms that give very good quality results. These
include SNcuts (attribute-based), GNetMine (link-
based), and particularly all SCHAIN variants, which
produce perfect or almost perfect clusterings.

� As we move from Yelp-Business to Yelp-Restaurant
and then to DBLP, the clustering tasks become more
challenging. For link-basedmethods and the SCHAIN
family, clustering quality drops. The drop in quality
for the link-based methods is very pronounced. For
example, the NMI of GNetMine (at 5 percent seeds)
drops from 0.996 on Yelp-Business to 0.183 on DBLP.
This shows that the latter tasks require attribute infor-
mation to achieve good clustering quality. From this
discussion, we see that both attribute and link infor-
mation can play important roles in object clustering,
particularly formore complex clustering tasks.

� The performance of spectral learning algorithms (SL,
SNcuts) is not very “stable”. For example, for Yelp-
Business, SL performs very poorly while SNcuts does
very well. On the other hand, SL performs better than
SNcuts for Yelp-Restaurant. As explained in [46],
additive normalization can lead to very poor perfor-
mance in the presence of distant outliers. This explains
the very low NMIs of SL (which employs additive
normalization) on Yelp-Business, which happens to

contain distant outliers. SNcuts, which employs row
normalization, does not suffer from such problems.
We also see that the performance of SNcuts on Yelp-
Business and DBLP gets worse with more seeds. This
is due to the following scaling problem. We observe
from our experiment that the values in the similarity
matrices derived with SNcuts for Yelp-Business and
DBLP are generally fairly small numbers (even for
similar objects). The similaritymatrices are thenmodi-
fied by considering the given supervision constraint.
In particular, a pair of seed objects (xu, xv) given in a
must link set will have their similarity value set to 1,
which is relatively large in the matrix. These large val-
ues cause SNcuts to incorrectly identify some similar
object pairs as cuts, leading to poorer clustering. For
SCHAIN, a must-link set exerts its influence via
Eq. (6), which essentially doubles (xu, xv)’s similarity
(instead of setting that to 1). This avoids the scaling
problem.

� For DBLP, the NMI of SemiRPClus decreases when
the % of seeds increases. The reason for this observa-
tion is that SemiRPClus identifies the meta-path APA
(co-authorship) as the most important meta-path by
giving it the highest weight among all meta-paths.
However, APA is a sparse relation. This is because a
typical author only co-authorswith a handful of other

TABLE 2
NMI Comparison on Yelp-Restaurant

Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.225 0.185 0.284 0.564 0.142 0.088 0.214 0.427 0.628 0.480 0:7160:716 0:689
10% 0.258 0.188 0.332 0.610 0.134 0.087 0.214 0.429 0.635 0.486 0:7220:722 0:707
15% 0.416 0.192 0.367 0.627 0.136 0.095 0.250 0.433 0.655 0.481 0:7340:734 0:725
20% 0.425 0.198 0.379 0.635 0.132 0.087 0.243 0.426 0.678 0.485 0:7400:740 0:738
25% 0.437 0.251 0.392 0.637 0.136 0.090 0.248 0.436 0.689 0.498 0:7470:747 0:744

TABLE 3
NMI Comparison on DBLP

Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.551 0.576 0.183 0.137 0.113 0.057 0.475 0.601 0.613 0.503 0:632 0:6340:634
10% 0.554 0.554 0.241 0.170 0.090 0.058 0.511 0.598 0.611 0.506 0:629 0:6390:639
15% 0.558 0.540 0.284 0.216 0.084 0.059 0.526 0.595 0.614 0.511 0:6330:633 0:6330:633
20% 0.560 0.531 0.314 0.251 0.080 0.061 0.521 0.599 0.615 0.508 0:6310:631 0:6310:631
25% 0.563 0.524 0.333 0.265 0.077 0.055 0.514 0.603 0.616 0.513 0:629 0:6370:637

TABLE 1
NMI Comparison on Yelp-Business

Attribute-only Link-only Attribute+Link SCHAIN Variants

% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.001 0.783 0.996 0.687 0.232 0.088 0.802 1:0001:000 0.909 1:0001:000 1:0001:000 1:0001:000
10% 0.016 0.764 0.996 0.697 0.312 0.084 0.807 1:0001:000 0.920 1:0001:000 1:0001:000 1:0001:000
15% 0.011 0.672 0.996 0.730 0.356 0.084 0.827 1:0001:000 0.968 1:0001:000 1:0001:000 1:0001:000
20% 0.004 0.630 0.996 0.757 0.371 0.085 0.840 1:0001:000 0.969 1:0001:000 1:0001:000 1:0001:000
25% 0.004 0.565 0.996 0.787 0.587 0.087 0.857 1:0001:000 0.970 1:0001:000 1:0001:000 1:0001:000
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researchers. That means APA is a weak relation in
measuring object (author) similarity. As the percent-
age of seeds increases, we find that SemiRPClus gives
APA even larger weights. This adversely affects the
performance of SemiRPClus.

� Our adaptation of FocusCO performs poorly in all
cases of our experiments. Even though FocusCO is a
semi-supervised clustering algorithm that utilizes
both attribute and link information, it is designed for
homogeneous networks. By converting an AHIN to
a homogeneous one, information about object and
link types is removed. This significantly weakens the
effectiveness of FocusCO.

� Although HANperformsmuch better than FocusCO,
it compares unfavorably against SCHAIN-based
methods. HAN uses node-level attention and seman-
tic-level attention to distinguish meta-path based
neighbors and to learn weights of meta-paths. How-
ever, it does not learn the relative importance of object
attributes.

� SCHAIN performs better than SCHAIN-RWR. This
shows that meta-paths are more effective than ran-
dom walk in deriving objects’ link-based similarity.
This observation is consistent with other works
related to mining on heterogeneous information net-
works, such as [3].

� SCHAIN performs better than SCHAIN-NL. This
shows that SCHAIN’s ability in learning and distin-
guishing the weights of different attributes and meta-
paths is important in achieving good clustering
quality.

� SCHAIN, SCHAIN-PI, and SCHAIN-IRAMgenerally
perform the best among all algorithms. In particular,
all three registered perfect scores for Yelp-Business.
The techniques we employed in SCHAIN, namely,
attribute-based similarity, meta-path-based similar-
ity, as well as weight learning, contribute effectively
to the clustering tasks. For Yelp-Restaurant and
DBLP, SCHAIN and SCHAIN-IRAM significantly
outperform the others. We observe that for these two
tasks SCHAIN-PI does not perform as well as
SCHAIN-IRAM. We remark that SCHAIN-PI uses
power iteration to generate k pseudo-eigenvectors to
approximate the top-k eigenvectors. Each pseudo-
eigenvector is a weighted linear combination of all
the eigenvectors. In such a process, the generated
pseudo-eigenvectors could contain redundant infor-
mation and may contain noise. In comparison,
SCHAIN-IRAM generates more accurate approxima-
tion to the top-k eigenvectors. Therefore, SCHAIN-
IRAM’s performance is more stable than SCHAIN-PI.

5.3.2 Weight Learning

An interesting feature of SCHAIN is its ability to learn the
weights of attributes and meta-paths. In this section we take
a closer look at the effectiveness of SCHAIN’s iterative
weight-learning process. We will use the three clustering
tasks as examples for illustration. We observe that SCHAIN-
IRAM has a similar weight-learning process as SCHAIN, so
we omit the details due to page limitation. In the following
discussion, we assume 5 percent seed objects.

Figs. 2a and 2b show the weights learned across itera-
tions for attributes and meta-paths, respectively, on Yelp-
Business. Recall that the task is to cluster business objects
by their geographical locations. From Fig. 2a, we see that
SCHAIN correctly identifies that the meta-paths BCB (busi-
nesses that are co-located in the same city) and BUB (busi-
nesses that serve the same customer) give the most relevant
relations in the locality of the businesses. It also correctly
gives a 0 weight to the meta-path BTB (businesses of the
same sector), which is irrelevant to the businesses’ locations.
Moreover, from Fig. 2b, we see that SCHAIN correctly iden-
tifies lat-long to be the only relevant attribute (which is
given a weight of 1.0), and considers other attributes irrele-
vant (which are given 0 weights).

Fig. 3 shows the weight learning for Yelp-Restaurant.
Recall that the task is to cluster restaurant objects by the
kind of food served. The figure shows that SCHAIN gives a
larger weight to the meta-path BRKRB (restaurants whose
reviews share the same keyword, such as dishes) than to the
meta-path BRURB (restaurants visited by the same cus-
tomer). This is reasonable because the same customers can
visit restaurants serving different categories of foods. Inter-
estingly, SCHAIN also finds that whether a restaurant
requires reservation and provides wait services are relevant
to predicting the restaurant’s category. This is because those
that do are likely higher-end restaurants, which serve more
expensive foods (such as Japanese Sushi).

Fig. 4 shows the results for DBLP. We see that SCHAIN
finds all three meta-paths relevant to the clustering task,
and they are given similar weights. Interestingly, SCHAIN
gives the attribute CIKM (the number of papers one pub-
lished in CIKM) a 0 weight. This is because for the dataset

Fig. 2. Weight learning on Yelp-Business. Fig. 3. Weight learning on Yelp-Restaurant.

Fig. 4. Weight learning on DBLP.
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we extracted, all authors have CIKM publications. So the
attribute has no discerning power for the task. Also,
SCHAIN gives more or less equal weights to the other 3
attributes because they are equally relevant in determining
the research areas of authors. From this discussion, we see
that SCHAIN is highly effective in learning the appropriate
weights of meta-paths and attributes.

5.3.3 Convergence Analysis

From Figs. 2, 3, and 4, we see that the weights reach their
optimal values in two to three iterations. Figs. 5a and 5b fur-
ther show the convergence of the objective function J and
the NMI of the resulting clusterings, respectively. From the
figures, we see that SCHAIN converges very quickly.

5.3.4 Efficiency Study

The major computation cost of SCHAIN is due to the com-
putation of the top-k eigenvectors of the matrix K (see
Eq. (8)), which has a complexity of Oðn3Þ, where n is the
number of objects to be clustered. SCHAIN-PI and
SCHAIN-IRAM provide approximate solutions to speed up
the eigenvectors computation. Table 4 shows the computa-
tion costs of the three methods when they are applied to the
three clustering tasks. From the table, we see both SCHAIN-
PI and SCHAIN-IRAM are much more efficient than
SCHAIN. In particular, for Yelp-Business, which has a
much larger dataset than the other tasks, SCHAIN-PI is
about 120 times faster than SCHAIN. Although SCHAIN-
IRAM is slightly slower than SCHAIN-PI, as we have dis-
cussed in Section 5.3.1, SCHAIN-IRAM provides a better
approximation of the eigenvectors and thus it gives similar
clustering quality as that of SCHAIN. In conclusion,
SCHAIN-IRAM is an effective and efficient solution for
clustering objects in AHINs.

5.3.5 Parameter Analysis

We study the sensitivity of SCHAIN-IRAM w.r.t. parame-
ters a and g. Recall that a controls the relative importance
between attribute-based similarity and link-based similarity
(see Eq. (3)) and g is the regularization hyper-parameter.
We conducted an experiment with 25 percent seed objects.

Figs. 6a and 6b show SCHAIN-IRAM’s NMIs as a and g

vary, respectively. When a = 0 (1), only link (attribute) infor-
mation is used. From Fig. 6a, we see that SCHAIN-IRAM
provides very stable performance over the range of a values
except when a is very small. The reason behind this stable
performance is that our SCHAIN-based methods are able to
scale the importance of attribute-based and link-based infor-
mation via the weight-learning process. The mild variations
at the small-a end of the figure is due to an extreme focus
on link information. From Fig. 6b, we see that SCHAIN-
IRAM is generally not very sensitive to g. In practice, one
can tune the parameters for the best performance by cross-
validation with the must-link and the cannot-link sets as
supervision information.

5.3.6 Synthetic Datasets

To further evaluate the algorithms, we conduct experiments
on synthetic datasets. We follow [37] in generating AHINs.
Due to space limitation, readers are referred to [58] for the
details of the synthetic data generator. As an example, we
generate a synthetic dataset SYN with around 1,000 nodes,
each belongs to one of three types and is associated with
two attributes. We then scale SYN to obtain AHINs of vari-
ous sizes (up to an order of 105 nodes) and of various edge
densities. Table 5 shows the NMI of the 12 algorithms when
they are applied to dataset SYN with 10 percent seed objects.
From the table, we see that SCHAIN-PI and SCHAIN-
IRAM achieve comparable clustering quality against
SCHAIN and all three methods greatly outperform other
competitors. Moreover, in the experiment, SCHAIN-PI and
SCHAIN-IRAM are 38.5 and 28.2 times faster than
SCHAIN, respectively. The results show that SCHAIN-PI
and SCHAIN-IRAM are much more efficient than SCHAIN,
while they are able to provide very comparable clustering
quality.

We scale SYN to obtain larger datasets and observe simi-
lar conclusions. In particular, for the dataset with 105 nodes,
the runtimes of SCHAIN-PI and SCHAIN-IRAM are 34.71s
and 39.06s, respectively. SCHAIN, however, does not termi-
nate in an hour. This shows that SCHAIN-PI and SCHAIN-
IRAM are very practical for large datasets.

Finally, we vary the edge density of the AHINs. We
observe that SCHAIN-IRAM remains efficient even for
dense networks. However, since our SCHAIN-based meth-
ods employ meta-paths to capture the link-based similari-
ties between objects, the network density could affect the
sparsity of the derived similarity matrices, which could in
turn lower the efficiency of our methods, especially for very
large datasets.

Fig. 5. Convergence analysis.

TABLE 4
Eigenvectors Computation Time (in seconds)

Yelp-business Yelp-restaurant DBLP

SCHAIN-PI 7.89 0.19 0.02
SCHAIN-IRAM 10.04 0.21 0.04
SCHAIN 945.36 16.12 0.10

Fig. 6. The performance of SCHAIN-IRAM as a and g vary.
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6 CONCLUSION

In this paper we studied semi-supervised clustering in
attributed heterogeneous information networks. We put for-
ward a novel algorithm SCHAIN, which integrates object
attributes and meta-paths with a weighting scheme in for-
mulating a similarity matrix for object clustering. SCHAIN
takes a supervision constraint in the form of a must-link set
and a cannot-link set, and through an iterative update pro-
cess, optimizes the weighting scheme. To further speed up
the model, we proposed two methods SCHAIN-PI and
SCHAIN-IRAM, which respectively use power iteration
based method and implicitly restarted Arnoldi method to
compute the eigenvectors of a matrix. We conducted exten-
sive experiments to show the effectiveness of SCHAIN and
illustrated its ability in assigning the most appropriate
weights to attributes and meta-paths. We also showed that
even though both SCHAIN-PI and SCHAIN-IRAM are effi-
cient, SCHAIN-IRAM achieves as good performance as
SCHAIN while the performance of SCHAIN-PI is unstable.
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